Particle Field Optimization: A New Paradigm for Swarm Intelligence

نویسندگان

  • Nathan Bell
  • B. John Oommen
چکیده

Particle Swarm Optimization (PSO) has been a popular meta-heuristic for black-box optimization for almost two decades. In essence, within this paradigm, the system is fully defined by a swarm of “particles” each characterized by a set of features such as its position, velocity and acceleration. The consequent optimized global best solution is obtained by comparing the personal best solutions of the entire swarm. Many variations and extensions of PSO have been developed since its creation in 1995, and the algorithm remains a popular topic of research. In this work we submit a new, abstracted, perspective of the PSO system, where we attempt to move away from the swarm of individual particles, but rather characterize each particle by a field or distribution. The strategy that updates the various fields is akin to Thompson’s sampling. By invoking such an abstraction, we present the novel Particle Field Optimization (PFO) algorithm which harnesses this new perspective to achieve a model and behavior completely distinct from the family of traditional PSO systems. Categories: G.1.6 [Optimization]: Global optimization; I.2.11 [Distributed AI]: Multiagent systems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization

Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...

متن کامل

Swarm Intelligence Optimization : Editorial Survey

This paper surveys the intersection of two fascinating and increasingly popular domains: swarm intelligence and optimization. Whereas optimization has been popular academic topic for decades, swarm intelligence is relatively new subfield of artificial intelligence which studies the emergent collective intelligence of groups of simple agents. It is based on social behavior that can be observed i...

متن کامل

A Comprehensive Review on Hybrid Swarm Intelligence for Optimization

With the rapid development of swarm intelligence research field, a large number of algorithms in swarm intelligence are proposed one after another. The strong points and the drawbacks of a specific swarm intelligence algorithm becomes clear to be seen when the number of its application increases. To overcome the handicaps, some hybrid methods are invented. In this review, three hybrid swarm int...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Swarm Intelligence in Optimization

Optimization techniques inspired by swarm intelligence have become increasingly popular during the last decade. They are characterized by a decentralized way of working that mimics the behavior of swarms of social insects, flocks of birds, or schools of fish. The advantage of these approaches over traditional techniques is their robustness and flexibility. These properties make swarm intelligen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015